
Intelligent Filtering of the APRS
Internet Gateway Data Streams

Darryl Smith, B.E., VK2TDS
POBox 169
Ingleburn NSW 1890
Australia
Phone: +61 412 929 634
Darryl@radio-active.net.au

ABSTRACT: APRS is a fast growing mode throughout the Amateur Radio world, thanks
to its combination of computers, radio, packet and the Internet. Such popularity has
increased the amount of data on the APRS network to a point where many users,
especially those outside North America, are overwhelmed by the volume, or in an attempt
to reduce the traffic volume do not enjoy the full benefits if Internet Connected APRS.
This paper describes work by the Author into filtering the data stream intelligently to
create manageable local networks.

Introduction

In the past 3 years since Internet gating of
APRS packets was started, APRS.NET traffic
volumes have increased dramatically. Although
I have been unable to find any documentation
on past traffic volumes, measurements indicate
that a complete stream from APRS.NET in mid-
2000 would consume more than 25-50 Mbytes
per day.

To gate this volume of traffic to RF would
require probably 10 times the transmission rate
as provided by the current 1200 bps packet
modems given the highly distributed nature of
APRS and ALOHA networking.

Even the most basic data stream, consisting of
only message and related position reports
consumes upwards of 4 Mbytes per day, placing
a significant load on any transmitting equipment

with little benefit to those receiving the
transmissions.

The number of stations world wide is beginning
to take its toll on the APRS software. We have
recently seen instances where the number of
stations on the network caused some APRS
software to fail. Redraw times have increased so
that only the fastest computers can realistically
be used to use APRS.

AFilter for instance was written so that end
users could filter their own data streams,
improving the performance and stability of
APRS applications.

Review of Traffic Volumes

Analyzing the APRS.NET traffic stream for
about 15 minutes reveals some interesting
results. The USA accounts for 79.8% of the
packets in this period that I logged the
APRS.NET Server. Adding Canada increased
the North American traffic to 89.2%.

Country Packets %
USA 786 79.8%
Canada 92 9.3%
Netherlands 23 2.3%
Australia 16 1.6%
Switzerland 14 1.4%
UK 11 1.1%
Brazil 8 0.8%
Hungary 7 0.7%
Portugal 6 0.6%
New Zealand 5 0.5%
Honduras 5 0.5%
Germany 5 0.5%
Italy 4 0.4%
South Korea 3 0.3%

Unfortunately, most of the USA based traffic is
of little use for the rest of the world. In fact most
of the USA traffic is of little use to most other
USA based amateurs. By eliminating most of
this data stream, the volume of data is far more
manageable, and scalable.

In some areas the current trend is to place the
entire APRS data stream onto RF. Whilst this is
a noble endeavor, it does tend to cause some
problems when the data stream contains more
information than the channel can support.

Data Segregation

The solution to the data overload problem is to
somehow reduce the volume of data that
individual users are required to deal with.

Several methods can be used to segregate traffic

•! Originating Callsign (Region)
•! Position in the world
•! Type (Message, Position, etc)
•! Redundancy of data

A combination of filters based on these
conditions will yield a reduced flow of
information, without decreasing the relevant
information. The APRSd software already has
filters to remove redundant data. Apart from
these it has very limited filtering capabilities.

Of course, MIC-E Emergency Packets should be
passed unconditionally.

Hierarchical Networks

Anyone who has researched the history of the
Internet will know that in the beginning it was a
very flat network, with flat protocols to support
the network. Even the naming of machines was
done on a single-level structure.

As the number of users grew, the old structures
were no longer able to support the increased
usage. Therefore the internet has been
transformed into a highly distributed
hierarchical structure.

The APRS IGATE system has similarly grown,
and is becoming increasingly fragmented and
hierarchical. It is growing thanks to the
proliferation of Open Source software, as well
as easier to use APRS software allowing an
IGATE to be setup without actually knowing
what you are doing, at almost zero cost.

The haphazard connections between IGATES
has caused some problems with APRS
messaging. Whilst packets are getting from the
extremities of the network to the main APRS
server, messages sent to the stations providing
these positions will often not get through.

The cause is due to the fact that many of the
IGATE systems only feed data into the network,
and do not retrieve data because of the sheer
volume of data.

Proposed Hierarchy Of Servers

I am proposing that APRS IGATE data be
filtered by the region, initially by callsign. Once
this happens, filtering by region can be added.
Those that prefer the present situation where
they can see all the world wide stations will still
be able to connect to APRS.NET.

APRS.NET

Europe Pacific

Asia
South

America

North
America

Africa

UK
Italy

Germany

Japan
Korea

Australia
New

Zealand

Honduras

Canada
USA

South
Africa
Kenya

In this proposal, there would be a root APRS
server, and a number of regional servers. These
regional servers would be permanently
connected to the root server exchanging data
much as happens with IGATES today.

Please note that I have not tried to include any
discussions about backup servers in this paper.
They are able to operate in a manner similar to
the present system with second.aprs.net.

Users would be encouraged to connect to a
regional server, but there would be no
requirement for this. It is anticipated that the

APRS.NET root server would become the de-
facto USA server under this plan.

As you go further down the chain you would see
a structure similar to the one appearing on the
next page.

This does not however have any advantage over
the current structure of IGATE’s except the
structure of naming. Something else is required
before this will give gains required for the
whole IGATE system.

To obtain any improvements some form of
filtering is required between the levels of the
network.

APRS .NET

APRS .NET . AU

VK2 . APRS .
NET . AU

VK .APRS .
NET . AU

ZL . APRS .
NET . AU

VK3 . APRS .
NET . AU

VK1 . APRS .
NET . AU

SYDNEY.
APRS .NET . AU

WYONG.
APRS .NET . AU

CHIFLEY .
APRS .NET . AU

Filtering of Data By Callsign

Australia and New Zealand have some
particular properties that both help and hinder
the development of our national APRS networks

Australia has a very structured callsign system
by state. The Number following the VK in
Australian callsigns indicate the STATE that the
Amateur lives in. It is rare to find an amateur
operating from a state other than what his
callsign would indicate, given the size of the
each state.

New Zealand has a similar structure, although
because of it’s size there is little use breaking
down traffic much further.

Visitors to Australia must obtain a LOCAL
callsign before they may legally operate in
Australia, which makes the structure even more
viable. However much of the rest of the world
does not have such stringent requirements, so
another solution is required.

Filtering of Data by Position
!
Because of the structure of the Australian and
New Zealand callsigns I have only recently
attempted to filter based on positions. This is the
logical next step so that users with non-local
callsigns are able to automatically use the local
IGATE system.

Development of software to filter the data
stream by position has just been completed. The
filtering technique being developed is based in
Richard Parry’s perlAPRS software. It takes a
list of valid grid squares, and then uses these to
validate the position.

Rules – Filtering Philosophy

Child to Parent IGATE

A number of basic rules can be applied to filter
data between the IGATE and the parent IGATE.
Any packets that do not satisfy one of these
rules will be discarded.

1.! All packets from VK*
2.! All packets from stations inside VK
3.! All messages to VK* or stations inside

VK
4.! All packets from a station who’s packets

are permitted under points #3, for 30
minutes after the last permitted packet.

Rule 1: Allows concentration of all VK* data
even when an alternate IGATE is used.

Rule 2: Allows any station that does not have a
VK callsign to be treated as if they did have a
VK callsign.

Rule 3: Any messages to VK stations, or other
stations operating inside VK should be allowed
in.

Rule 4: Allows positions of any stations sending
messages to VK to show up on the server. This
rule may need to be changed later so that their
messages to non-VK stations do not appear – As
only one side of the conversation would be
heard anyway. The 30 minute limit allows keeps
the link open as long as the users continue to
converse.

Child to Parent IGATE

Some IGATE data is not relevant apart from for
users of that IGATE. Therefore the following
rules are used to filter the data stream. All
packets will be passed, except if they match any
of these rules.

1.! Messages to ‘javaMSG’ and to
‘USERLIST’.

2.! Packets to ‘FBB’
3.! Packets to ‘MAIL’ where the first

characters of the payload are ‘BBS’
4.! Packets that have malformed contents.

These rules reduce the amount of data being
sent to the parent quite significantly.
!!
Users?

Having a look at the diagram below one
important question is ‘Where does a user
connect?’. The answer is basically wherever
they want to. Generally the answer would be to
connect to the server offering country-wide
data. However if they were wanting to IGATE
their information from other IGATE’s in their
state only, they might want to connect to their
State APRS server.

In either case, any packets they receive from RF
and place back onto the APRS network would
filter back to the root APRS server, as well as
down to the State based APRS server.

Messages will be delivered regardless of the
where the user is connected, provided the
connection point is within the filtering range.
Messages will be fed up the chain no matter
what filtering rules are in place.

A P R S . N E T

V K * Z L *

A P R S . N E T . A U

V K 2 *

V K 2 . A P R S .
N E T . A U

V K 2 T D S V K 2 X G J V K 2 H D J

2 3

1 0 1 5 2

1 0 1 5 2

1 0 1 5 2

Filtering Software
!
The filtering software I have written has been
coded in Perl running under Linux. I chose Perl
as it is a very quick prototyping language, with
the power of ‘C’ and the flexibility of Basic. As
it is basically an interpreted language, it is very
quick to modify code and see how the changes
work.

The software consists of three modules. They
are

•! perlFilter.pl
•! perlTelnet.pl
•! perlAPRS.pl

perlFilter is the main filtering program. It
contains all the rules, and logic deciding what
packets are allowed in either direction. It
connects to the up-stream and down-stream
APRSd servers, providing all the data
communications between the two. perlFilter
actually authenticates itself with each server so
that the connections are bi-directional.

perlTelnet is a specialized TELNET program.
Whilst most telnet programs quit when the
connection is closed, perlTelnet then attempts a
connection to the next server on the list. If no
servers can be contacted, it continues until it
finds one that can..

A basic structure of the software appears in the
diagram following. In this diagram, the boxes
with the partial callsigns (“VK*”, “ZL*” and
“VK2*”) are the perlFilter programs, with the
filter properties listed.

In this way, APRS.NET.AU only receives
packets from APRS.NET that are relevant to it –
All VK and ZL packets, as well as packets to
those stations.

Likewise VK2.APRS.NET.AU only receives
packets from APRS.NET.AU that are relevant
to VK2. This arrangement reduces the load on
servers and the underlying communications
network.

I have also modified Richard Parry’s perlAPRS
software to check if the location of a mobile
station is within the location specified by the
configuration file.

perlFilter does NOT filter packets from stations
that connect directly into the IGATE. What
would be ideal is for the capability for APRSd
to use external filters on all incoming data
streams automatically.

Operation

The software has now been operational for
several weeks, and is working well. At times it
causes the operation of APRS to become less
intuitive – by requiring users to send messages
to stations outside the filter range before they
will appear on the screen. Until the user appears
on the screen, users do not normally send
messages.

In other words, users must register their
locations, or an association with the location (by
sending a message to that location) before their
data will be passed. This geo-referencing should
be an integral part of all wide area AVL systems

I found that soon after I started messaging a user
in the USA, his position appeared on my map.
Also his messages to other users in the USA
appeared on the raw data coming from my
APRS server.

I found that the reduction in data volume was a
great advantage in operating this way. I have
found that users are generally happier with the
reduced volumes, as they were being overloaded
with information.

I am now looking at how to integrate similar
software into APRSd as a hook point to improve
the filtering.

Conclusion

Just as the telegraph, telephone and Internet
have grown from flat networks to hierarchical
networks, APRS networking must also mature
in a similar manner. Unlike those other
networks, the basic protocols will not need to
change for this shift, just the servers, and their
interconnections.

The work I have done on creating hierarchical
servers is just another step in the evolution of
APRS towards a scalable network oriented
system. The software I have developed allows
users to add customized filters to the data stream
in line with local requirements.

Software Availability

The software is available on the following
WWW site:

http://radio,active.net.au

It is written for Redhat LINUX, but should run
on almost any platform that supports Perl and
multi-processing. It does not even need to be
running on the same machine as the servers it
connects.
!

